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In terms of certain lengths near the saddlepoint of an activated complex relative to the de Broglie wave length of the 
atom being transferred, the reaction coordinate of bimolecular atom-transfer reactions is profitably classified as: (1) essen­
tially classical, (2) essentially separable or (3) non-separable. In terms of the location of the saddlepoint and energy-dis­
tance curvatures through the saddlepoint, simple general rate expressions for case 1 and case 2 are given, including a small 
degree of tunnelling, utilizing the recent general method (ref. 6) of evaluating the configuration integral of any molecule. 
Hydrogen atom transfer reactions below several hundred degrees centigrade are in the region of non-separable reaction co­
ordinates. For these cases more information about the potential energy surface is needed than the saddlepoint geometry and 
curvatures. Sample calculations using the Sato-potential energy surface for H3, as evaluated by Weston, illustrate an ap­
proximate method for treating non-separable reactions, including large degrees of non-separable tunnelling. The hydrogen-
deuterium isotope effect in reactions of methyl radicals with hydrocarbons is worked out in detail, and this method of han­
dling large degrees of tunnelling appears to agree with the experimental data over a wide temperature range (aitnough there 
is large experimental error). 

Introduction 
In a previous article2 referred to as T-I we 

pointed out the anomalies in the rates of hydrogen-
atom abstraction reactions by methyl radicals. 
The data clearly required some tunnelling correc­
tion, and yet such a correction based on a one-di­
mensional Eckart potential along the classical reac­
tion path greatly overestimated the rate. The 
comparison of H3C-H-D and H3C-D-H also indi­
cated these reactions have about equal tunnelling 
factors with tunnelling occurring along modes of 
motion different from the normal modes of small 
vibration theory. We developed the thesis that the 
usual procedure of treating the reaction coordinate 
as a one-dimensional, separable coordinate cannot 
be employed if the de Broglie wave length A* for 
the atom being transferred is large compared to the 
linear portions (both in the R1-R2 plane and along 
the potential energy profile) of the potential energy 
surface around the saddlepoint. 

The meaning of these restrictions is well brought 
out by considering the classical reaction path in the 
Ri-R2 plane, AOB in Fig. 1, and by considering the 
energy profile along this path, AOB in Fig. 2. 
Fig. 1 shows several features of a conventional 
potential energy surface3 with contour lines of con-

(1) In part from Ph.D. thesis by D. Rapp, Univ. of Calif., 1959. 
(2) H. S. Johnston, Advances in Chemical Physics, 3, in press (1960). 

stant potential energy, the "classical reaction path" 
AOB, and with several straight lines drawn in. 
The potential energy4 along the "classical reaction 
path" is given by AOB in Fig. 2, and an extended 
parabola based on the curvature at 0 is given by 
POQ. 

It is convenient to recognize three special cases, 
although in fact the three situations flow continu­
ously from one to another. (1) The reaction co­
ordinate is essentially classical: The criterion is 
that the de Broglie wave length A* of the atom be­
ing transferred is short compared to the essentially 
linear portion of AOB near O in Fig. 1 and is short 
compared to the essentially flat-topped portion of 
AOB near O in Fig. 2. (2) The reaction coordinate 
is separable but not classical: In an area near the 
saddlepoint O in Fig. 1 the changes in potential 
energy on the surface may be adequately approxi­
mated by 

2AF = F11(AR1)
2 + F22(ARi)* + 2F12AR1AR1 (1) 

where A's refer to displacements from the saddle-
point. The criterion for the separability of the 
reaction coordinate is tha t each dimension of this 

(3) S. Glasstone, K. J. Laidler and H. Eyring, "Theory of Rate 
Processes," McGraw-Hill Book Co., New York, N. Y., 1941. 

(4) The features of Fig. 2 are to scale and are based on Dr. Ralph 
Weston's Sato potential for the Hs activated complex, R. E. Weston, 
J. Chem. Phys., Sl1 892 (1959). 
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Fig. 1.—Portion of a potential energy contour map for 
atom transfer reaction, where the activated complex is 
symmetrical with respect to bond lengths Ri and Rt and to 
force constants along these bonds. AOB is the "reaction 
path"; COD is the extended symmetric stretch normal 
mode; EOF is the extended reaction coordinate or reaction 
normal mode; GH is a line parallel to EOF at a "shorter 
crossing distance"; and LM is a line parallel to EOF at a 
"longer crossing distance." 

area be long compared to A*; that is, the dimen­
sions of the quadratic region near the saddlepoint 
O must be large compared to A*. The region over 
which the parabola POQ in Fig. 2 corresponds ade­
quately to the reaction path AOB may be used to 
estimate the extent of the quadratic region; it is 
about ± 0.3 A. for H3. (3) The reaction coordinate 
is non-separable: The criterion is simply that the 
de Broglie wave length A* is larger than the dimen­
sions of the quadratic region. The de Broglie wave 
length, h(2TmhT)~l/*, for a hydrogen atom at 
300°K. is 1.01 A. and at 5000K. is 0.78 A. Thus 
reactions involving hydrogen transfer at tempera­
tures within several hundred degrees of room tem­
perature fall into the third category! 

This article develops an approximate method for 
treating special cases of reactions which fall under 
group 3. Further and more fundamental work on 
this topic is underway.5 

Classical Reaction Coordinate.—For a flat topped 
barrier (that is, flat relative to A*) it is convenient 
to consider two sub-classifications: (a) all internal 
vibrations are also classical and (b) the other inter­
nal vibrations are quantized. For the reaction Ax 
+ B = A + xB, the completely classical problem 
can be set up with no conceptual difficulties. If 
reactants Ax and B have an equilibrium distribu­
tion over their excited molecular states, then prop­
erties of the activated complex with respect to 
arrival of reactants should be averaged over equilib­
rium distributions. If an imaginary line is placed 
through and normal to the saddlepoint (point O in 
Fig. 2), the flux of systems through this line from 
the side of reactants is 

Fig. 2.—Potential energy profiles along various lines in 
Fig. 1. Energy and distance are to scale for the H activated 
complex according to Weston's calculations of a Sato 
potential. The line POQ is the extended parabola that has 
the same curvature — F* as EOF at O. In fitting an Eckart 
function to curve EOF, the parameters are the negative 
curvature F* and the energy difference A V*. 

R = ^ ^ E T ' ^ (2) 

where QA.X and QB are partition functions for reac­
tants, Q^ is the complete partition function (3iV 
dimensional) for the activated complex, Q* is the 
phase integral for the reaction coordinate, (1/h) 

I e _ H* /* r dgdp, and the other terms are con­
ventional. Eyring,3 reasonably enough, prefers to 
express both Q± and Q* in normal mode coordi­
nates, so that <2* cancels the identical term in Q$ 
leaving Q^' 

K-2±1 [Ax][B] h-l e-'»** (3) 

where K is the probability that the particle go on to 
products after it has once crossed the line above the 
saddlepoint. An alternate method, which is ulti­
mately identical though quite different in the com­
putational stages of the problem, is to express Q^ 
/£?A*<2B in terms of local valence-bond coordinates,6 

to express <2* in terms of the reaction coordinate 
normal mode and to derive (appendix 1) the rate 
expression for a single reaction site and single elec­
tronic state 

*HJR = %^f- [Ax][B],*e-wr (4) 

The configuration integrals are given in the re­
cently-derived,6 general, simple form 

•ZAZ ~ 

(27r£r)<3-v'-«'2 

\F.\ Ax1A 

"Z4:" -

II'. 
1 

(2irkTY'N-M* T j j \F.\ *V. 

(5A) 

(5B) 

where Ni is the number of atoms in the reactant 
Ax, N is the number of atoms in the activated com­
plex, \FS IAx is the determinant of the force constant 
matrix for Ax in local valence bond coordinates, 
I .FsI 4: is the force constant matrix based directly 

on the various curvatures (as demonstrated in 

(5) K. S. Pitzer and E. M. Mortensen, private communication. 
(6) D. R. Herschbach, H. S. Johnston and D. Rapp, J. Chtm. Phys. 

Sl1 1652 (1959). 
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Fig. 3.—Symmetrical Eckart potential energy function 
and the truncated parabola with the same negative curva­
ture at the maximum, F*, and the same total height V*. 
The plot of potential energy against distance is expressed 
in dimensionless form. 

appendix 2) through the saddlepoint of the acti­
vated complex. (An expression similar to 5A applies 
to the other reactant.) In (4) v* is the imaginary 
"frequency of the reaction coordinate," and it is 
given by (1/2 Tr)(A*)1/' where X* is the negative 
root of IFG — E\ | = 0 for the activated complex.7 

A general method for finding j a and a convenient 
table for typical molecular groupings are given in 
ref. 6. 

In case b, as defined above, that is, real vibrations 
of the reactants are quantized, we must include in 
the denominator a correction factor 

I\A* = («i/2)/sinh («i/2) = QoJQd (6) 
where Mi = hvi/kT. For the vibrations of the 
activated complex orthogonal to the classical reac­
tion normal mode, we may also add a factor Ti * of 
the same form as (6). However, here we encounter a 
conceptual difficulty; as pointed out by Kassel8 the 
use of quantum mechanical stationary state partition 
functions for a species as transient as an activated 
complex is highly questionable. For the moment, 
bypassing this difficulty, the rate expression for 
classical reaction coordinate and quantized orthog 
onal vibrations is 

ZN -7 n r* 
Rate - Rate (eq. 4) 3N^ _ „ 3yB _ 6 (7) 

n TAX n* 
where the T's all have the form of eq. 6 . 

One Dimensional Barrier Penetration.—In this 
section we wish to extend the work of Kemble,9 

Bell,10 Eckart,11 Shavitt12 and others8 by presenting 
the numerical and graphical results of the trans­
mission coefficient as a function of energy and the 
distribution of transmitted systems from an inci-

(7) E. B. Wilson, Jr., J. C. Decius and P. Cross, "Molecular Vibra­
tions," McGraw-Hill Book Co., New York, N. Y., 1955. 

(8) L. S. Kassel, J. Chem. Phys., S, 399 (1935). 
(9) E. C. Kemble, "Fundamental Principles oi Quantum Me­

chanics," McGraw-Hill Book Co., New York, N. Y., 1937. 
(10) R. P. BeIi, Trans. Faraday Soc., S5, 1 (1959). 
(11) C. Eckart, Phys. Rev., 85, 1303 (1930). 
(12) I. Shavitt, J. Chem. Phys., Sl, 1359 (1959). 

dent packet of particles with a Boltzmann distri­
bution of energies for the two potential energy 
barriers shown in Fig. 3. The solid line is a sym­
metrical Eckart3 potential of height V* and curva­
ture — F* at the maximum 

V(x) = (8) 
cosh2 [x(F*/2V*)l/t] 

The dotted line in Fig. 3 is a truncated parabola 
with the same barrier height, V*, and curvature, 
— F*, as the Eckart potential. 

V(x) = *V - 7,F**» (9) 

The Schroedinger equation for the Eckart poten­
tial can be solved, and for an incident particle of 
mass n and energy E the transmission coefficient is 

cosh (2a|'A) - 1 
K(I) (10) cosh (2a |V>) + cosh ( 4 a 2 - x»)V> 

where | = E/V*, a = 2*V*/hv* and v* = ( 1 AT) 
{F*/fj)l'\ If 4a2 » ir2 and for £ = 1, the trans­
mission function for the Eckart potential ap­
proaches the WKB solution for the parabolic bar­
rier, which is10 

K(I) = [l + exp«<l - I ) ] " 1 (11) 

As a approaches infinity one obtains high flat-
topped barriers and consequently the transmission 
functions for both parabolic and Eckart barriers 
approach the classical form 

K(D = 0, | < 1 ; K(D = 1 , | > l (12) 
The form of the transmission functions for the para­
bolic barrier for various values of a relative to a 
classical barrier is given in Fig. 4; similar curves for 
Eckart barriers are given in Fig. 5. Numerical 

Fig. 4.—Transmission coefficients of a parabolic barrier 
as a function of the energy of an incident particle for various 
values of the parameter a = 2irV*/hv*. For quantum 
mechanical systems, one notes reflections above the barrier 
as well as penetration beneath the barrier. 

Fig. 5.—Transmission coefficients of an Eckart barrier 
as a function of the energy of an incident particle for various 
values of the parameter a = 2icV*/hv*. 
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values for the transmission coefficient of the Eckar t 
barrier as a function of a and u* are given in Table 
I. I t is noted tha t the transmission function K(£) 
for the parabolic barrier is symmetrical with re­
spect to inversion through K = 1/2, £ = 1; and 
for low values of a, for example ir/2, large degrees of 
tunnelling would occur below zero energies if the 
parabola were not truncated. The transmission 
function for the Eckar t barrier goes to zero a t zero 
energy. Another interesting feature of Figs. 4 and 
5 is tha t quan tum systems are reflected above the 
barrier as well as transmitted through the barrier. 
The net effect of this non-classical reflection and 
non-classical penetration is, as usual, given the name 
"tunnell ing." 

If a packet of particles, each of mass fx, and with 
an equilibrium distribution of energies proportional 
to exp ( 7 * - E)/hT = exp [V*{1 - $)/kT] is 
incident on the barrier of Fig. 3, the distribution 
function for t ransmit ted systems is K(£) exp [V* 
(1 — Z)IkT], where K(I) may be taken from (10) or 
(11). Under special conditions (u* < 2-a, a < 
V*IkT) the transmission function for the parabolic 
barrier may be integrated over a Boltzmann dis­
tribution of incident particles to give a closed ex­
pression. The corresponding integral for the Eck­
ar t potential does not seem to have a ready analyti­
cal solution; however, following the usual proce­
dure,12 we have evaluated it graphically and nu­
merically with an I B M 704 computer for a number of 
cases of interest. Sample graphs of this sort for a 
= 8 and for u* = T/2, T and 2ir for all three trans­
mission functions are given in Figs. 6-8. These 
three figures correspond to a barrier height of about 

6 kcal., an imaginary frequency of about 1600 i, 
and temperatures respectively 1500, 750 and 375° 
K. The ratio of the area under the Eckar t dis­
tr ibution function in Figs. 6-8 to the area under the 
classical distribution curve gives the ratio of the 
number of t ransmit ted systems in the Eckar t case 
to the numbers expected from classical mechanics. 

Figs. 6-8.—Distribution of systems transmitted through 
and over a barrier for an initial Boltzmann distribution of 
energies. For quantum mechanical systems the distribu­
tion of systems which pass is given for both parabolic and 
Eckart barriers, and the classical distribution is the same 
for each barrier, a = 2irV*/hv* and u* = hv*/kT where 
v* = {1/iTr){F*/m.y,i and F* is the absolute value of the 
negative force constant at the maximum. Relative areas 
under these and other similar curves give the data in Table 
II. 

This ratio is written as r * = jfequ/&ci. Values of T* 
are given in Table I I as a function of u* and a. 
From Fig. 7 one sees tha t for u* = ir, the distribu­
tion of transmitted systems for the parabolic barrier 
is symmetrical about f = 1, t ha t is, half the systems 
pass over the barrier and half tunnel through the 
barrier; this is t rue for all values of a, and the 
spread of energy of the transmitted systems goes 
up as a decreases. 

In Fig. 6 the distribution curve for the parabolic 
barrier goes to zero a t about £ = 0.5; in Fig. 7 this 
curve has a small positive intercept a t zero energy; 
in Fig. 8 very heavy tunnelling occurs a t zero 
energy and would occur to energies of minus in­
finity except for truncation of the parabolic func­
tion. One is sure tha t the truncation shown in Fig. 
3 is not a realistic picture of actual potential energy 
surfaces; the smooth continuous Eckar t potential 
is much more nearly realistic. Thus we propose 
tha t the parabolic potential should not be used 
unless the distribution function, K(£) exp(F* -E)I 
kT, is essentially zero a t £ = 0. In this way the 
artificial truncation process need never be invoked. 
For larger degrees of tunnelling the Eckar t poten­
tial is undoubtedly a better approximation. If 
the distribution function is essentially zero a t £ = 
0, a condition safely observed if u* < T and a > 2, 
then the parabolic barrier has the simple tunnelling 
correction function10 

T* = («*/2)/sin (M*/2); u* < T; a > 2 (13) 

Finally, it is necessary in many cases to consider 
how the tunnelling factor T* changes with tempera­
ture. The parameter 6* is defined as 

e* = rdinr*/dr (14) 
For the parabolic barrier correction as given by (13) 
this function is [(u*/2) cot (u*/2) - I ] . 

Separable Reaction Coordinate.—Insofar as the 
primary making and breaking of a bond is con­
cerned, an atom transfer reaction usually is dis­
cussed in terms of a potential energy contour plot 
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TABLE I 

TRANSMISSION COEFFICIENT K(I-,a) FOR SYMMETRICAL ECKART BARRIERS AS A FUNCTION OF INCIDENT ENERGY, £ 

AND FOR D I F F E R E N T VALUES OF a = 2rV*/h \v*\ 
12 8 4 3 2 1 0.50 0.25 20 

0.0,0 
.0,0 
.0,1 
.0a46 
.0692 
.0314 
.0216 
.016 
.127 
.531 
.889 
.981 
.997 

000 
000 
000 
000 
000 

0 1.000 

16 

0.0,2 
.0660 
.0691 
.0,99 
.0S86 
.0262 
.038 
.184 
.539 
.848 
.961 
.990 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

0.0,9 
.0521 
.0,24 
.0,18 
.O2Il 
.0S55 
.024 
.089 
.264 
.551 
.799 
.924 
.973 
.990 
.996 
.998 
.999 

1.000 
1.000 
1.000 

0.0,24 
.0320 
.0398 
.0*38 
.012 
.036 
.090 
.201 
.375 
.577 
.749 
.863 
.928 
.962 
.980 
.990 
.994 
.997 
.998 

0.0267 
.021 
.047 
.090 
.153 
.238 
.339 
.449 
.557 
.655 
.737 
.803 
.853 
.892 
.920 
.941 
.956 
.967 
.975 
.981 

0.028 
.070 
.129 
.201 
.287 
.379 
.471 
.558 
.637 
.705 
.762 
.809 
.847 
.878 
.902 
.922 
.937 
.949 
.959 
.966 

0.115 
.229 
.335 
.432 
.517 
.591 
.654 
.708 
.752 
.790 
.821 
.848 
.870 
.889 
.904 
.918 
.929 
.938 
.946 
.953 

0.455 
.633 
.728 
.787 
.826 
.855 
.877 
.893 
.906 
.918 
.927 
.934 
.941 
.946 
.951 
.956 
.959 
.962 
.965 
.968 

0.791 
.884 
.920 
.939 
.951 
.959 
.965 
.970 
.973 
.976 
.978 
.980 
.982 
.983 
.984 
.986 
.987 
.987 
.988 
.989 

0.940 
.969 
.979 
.984 
.987 
.990 
.991 
.992 
.993 
.994 
.994 
.995 
.995 
.996 
.996 

.997 

.997 

.997 

JS/7*, 

0.125 

0.984 
.992 
.995 
.996 
.997 
.997 
.998 
.998 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

TABLE II 

TUNNELLING FACTORS, T* = k^/hi, FOR SYMMETRICAL ECKART POTENTIALS AS A FUNCTION OF U* h\v*\ /kTANDa 

1. 
2. 
3 . 
4. 
5. 
6. 
7.0 
8.0 
9.0 

10.0 
12.0 
14.0 
16.0 

20 

1.1 
1 
1 
2 
3 
6 

14.9 
46 

199 

2 
5 
0 
2 
11 

ii 

1 
1. 
1 
2 
3. 
5 

12 
32 

107 
437 

1 
2 
5 
0 
21 

12 

1.1 
1. 
1. 
2 . 
3 . 
5. 
9. 

22 
55 

162 

2 
5 
0 
07 
21 
90 

.16 

.24 

.56 

.04 

.94 

.54 
7.60 

13.8 
27 
57 

307 

1 
1 
1 
2 
2 
3 
5 
7 

11. 
17. 
42 

110 
304 

o n a R1-R2 d i a g r a m s u c h a s F ig . 1. O n t h i s d i a ­
g r a m t h e r e a r e t h r e e e x t r e m e s a l o n g t h e "c lass ica l 
r e a c t i o n p a t h , " inf in i te ly s e p a r a t e d r e a c t a n t s , i n ­
finitely s e p a r a t e d p r o d u c t s , a n d t h e a c t i v a t e d c o m ­
p lex n e a r t h e s a d d l e p o i n t of t h e p o t e n t i a l e n e r g y 
su r face . I n a T a y l o r series e x p a n s i o n a b o u t e a c h 
of t h e s e t h r e e p o i n t s , t h e t h r e e c o n s t a n t t e r m s d e ­
fine: a n or ig in of ene rgy , t h e a c t i v a t i o n e n e r g y a t 
a b s o l u t e zero a n d t h e h e a t of r e a c t i o n a t a b s o l u t e 
zero , n o t i n c l u d i n g zero p o i n t e n e r g y . T h e first 
d e r i v a t i v e of e a c h is zero b y v i r t u e of i t s b e i n g a n 
e x t r e m u m ; a n d for sufficiently s m a l l d i s p l a c e m e n t s 
a b o u t e a c h p o i n t t h e p o t e n t i a l e n e r g y su r face is 
a d e q u a t e l y d e s c r i b e d b y q u a d r a t i c t e r m s , a s in 
eq. 1. I t is o n l y w i t h i n t h e q u a d r a t i c r eg ion t h a t 
t h e v i b r a t i o n s a r e s e p a r a b l e n o r m a l m o d e s . F o r 
s o m e w h a t l a r g e r d i s p l a c e m e n t s t h e n o r m a l m o d e 
c o o r d i n a t e s a r e r e c o g n i z a b l e a n d c o n v e n i e n t , a n d 
t h e y a r e u s e d w i t h c o r r e c t i o n s for t h e p e r t u r b i n g 
effect of " a n h a r m o n i c i t y " a n d for s l igh t c o u p l i n g 
w i t h r e s p e c t t o e n e r g y t r a n s f e r . F o r e v e n l a r g e r 
d i s p l a c e m e n t s t h e n o r m a l c o o r d i n a t e s lose t h e i r 
i d e n t i t y a n d use fu lness ; t h e s y s t e m i n g e n e r a l b e ­
c o m e s o n e of n o n - s e p a r a b l e , i n t e r a c t i n g coord i -

18 
30 
58 
02 
69 
69 
23 
60 
3 
3 

.20 

.31 

.60 

.00 

.57 

.38 

1. 
1. 
1. 
2. 
2. 
3 . 
4.52 
6.15 
8.48 

11.9 
24 
50 

107 

2 
1.22 
1.32 

l 

1.19 
1.27 

57 
91 
34 
90 
62 
55 
76 

7.34 
12.1 
20 
34 

.43 

.61 

.83 

.09 

.38 

.72 

.11 

.56 

1. 
1. 
1. 
2. 
2 . 
2. 
3 . 
3 . 
4 .68 
6.19 
8.19 

0.5 

1.12 
1.16 
1.25 
1.34 
1.44 
1.55 

67 

94 
09 
42 
81 
25 

0.25 

.06 

.08 

.12 

.17 

.22 

.26 
1.31 
1.37 
1.42 
1.47 
1.60 
1.73 
1.87 

0.125 

1.03 
1.04 
1.06 
1.08 

.10 

.13 

.15 
,17 
20 
22 
27 

.32 
37 

n a t e s . T h e r e a c t i o n c o o r d i n a t e is " s e p a r a b l e " ove r 
t h e r eg ion n e a r t h e s a d d l e p o i n t w h e r e t h e p o t e n t i a l 
e n e r g y su r face m a y b e r e g a r d e d a s q u a d r a t i c a s i n 
eq. 1. 

T h e r a t e express ion for t h e s e p a r a b l e p a r a b o l i c 
r e a c t i o n c o o r d i n a t e i n v o l v e s a t u n n e l l i n g f a c t o r for 
t h e o n e d i m e n s i o n a l n o r m a l m o d e 

Jo Kqu (E) P(E) d £ X Kci (E) P(E) AE (15) 

w h e r e t h e i n t e g r a l in t h e n u m e r a t o r is t h e a r e a u n d e r 
t h e d o t t e d c u r v e in F i g . 6 or 7 a n d t h e d e n o m i n a t o r 
is t h e a r e a u n d e r t h e class ical c u r v e s o n t h e s a m e 
f igures. T h e r a t e express ion for t h e s e p a r a b l e r e a c ­
t i o n c o o r d i n a t e is t h u s 

Rate (separable) = R(eq. 7) T* (eq. 13) (16a) 

T h i s e q u a t i o n c a n b e expres sed in t h e f o r m 

r w _ 6 * 
Rate (separable) = R (classical, eq. 4) 

IK 
(16b) 

I n t h i s w a y w e see o n e of t h e a d v a n t a g e s of ex­
p r e s s i n g t h e r a t e in t e r m s of t h e c lass ical conf igura ­
t i o n i n t e g r a l w i t h q u a n t u m c o r r e c t i o n s ; t h e t u n -
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nelling factor for the separable reaction coordinate 
appears naturally as one of the 3iV — 6 quantum 
factors for the activated complex. It is an amusing 
coincidence that the quantum correction factors 
have the same form, («/2)/sinh(«/2), where u is 
real for real vibrations, and for the reaction coordi­
nate it is imaginary, conver ting sinh(w/2) tosin(«/2). 

Another comparison of eq. 3 and 4 will be pointed 
out. When use is made of eq. 3, one goes to great 
pains to evaluate moments of inertia for the mole­
cule as a whole or for internal rotors, if they are 
present. However, these moments of inertia al­
ways identically cancel mass terms in the compli­
cated expressions for the product of vibrational fre­
quencies in the classical limit of the vibrational 
partition function. Thus eq. 4 is equivalent to eq. 
3, but with eq. 4 one never needs to compute mo­
ments of inertia and other terms which cancel. A 
common approximation in using eq. 3 is to treat 
vibrational partition functions as unity. If some 
vibrational frequencies are indeed low, then in 
effect one puts the moment of inertia in the numer­
ator but fails to put the compensating terms in the 
low frequency vibrational partition function in the 
denominator. This approximation leads to sub­
stantial errors, up to a factor of 106, in polyatomic 
activated complexes. 

Non-separable Reaction Coordinate.—If the de 
Broglie wave length associated with the atom being 
transferred is large compared to the quadratic 
portion of the potential energy surface, then the 
reaction coordinate is not separable from the real 
vibrations. In this section we wish to explore a 
simple, though inexact, method for handling this 
situation. We express the rate as 

Rate = 

Rate (eq. 7) f... f°Km (q,E)P(E)dql. .. dqAE 
z- ^ (17) 

C... f " K01 (q,E)P(E)dql. ..dqAE 

where Kqil(q,E) is the quantum mechanical trans­
mission coefficient of a particle with energy E 
(relative to reactants) and coordinates q arriving 
from reactants, Kc\(q,E) is the classical transmission 
coefficient (zero or one) and P(E) is the probability 
of energy E in the coordinates q. 

When A and B are heavy atoms or groups and x 
is H or D, we have the simplest case with which to 
test (17). Normal mode analysis (with .FAX* = 
FxB *) gives a reaction coordinate in which di?Ax = 
— di?XB, that is, i?AB remains constant and x moves 
from A to B with a small motion of A-B to conserve 
center of mass. The reduced mass of this motion is 
essentially mx/2 (the factor of 2 arises because a 
single unit of motion of x adds to RAX and subtracts 
from i?XB to give a double motion in 6.RAX ~ dRKB) 
This coordinate corresponds to motion through the 
saddlepoint with a slope of —45°. Any other angle 
of crossing corresponds to forced motions of the 
heavy end groups, A and B, and to a much higher 
effective mass. Thus the integration in (17) can 
be carried out for different values of the crossing 
point, but in all cases for a —45° crossing angle, as 
between GH and LM of Fig. 1. The "approxi­
mate method" mentioned in the introduction is that 
the line through each such crossing point is treated 

as a quasi-one dimensional symmetrical Eckart-
potential tunnelling problem. 

Dr. Weston evaluated in detail a potential energy 
surface for the H-H-H reaction.4 He has kindly 
let us borrow his detailed numerical values of the 
potential energy function. We are using these data 
to explore the effect of large scale tunnelling. The 
saddlepoint for H3 is at 0.93-0.93A. The reaction 
normal mode is a straight line of —45° slope 
through 0.93-0.93, EOF of Fig. 1. The energy 
profile of such a straight line is given to scale in 
Fig. 2 as EOF. A parabola with the same curva­
ture at 0.93-0.93 is included in Fig. 2, and we see 
that the quadratic region along this energy profile is 
about ± 0.3 A.; the de Broglie wave length of a 
hydrogen atom at 5000K. is 0.78 A. The extended 
reaction coordinate EOF encounters side-wall re­
pulsion and eventually turns upward. The mini­
mum energy is 1.4 kcal. below the saddlepoint, 
AF* of Fig. 2, while the energy of reactants is 8.6 
kcal. below the saddlepoint. Parallel cuts ( — 45°) 
at different crossing points, 0.96-0.96 (LM)1 0.90-
0.90 (GH) are shown in Figs. 1 and 2. For crossing 
points snorter than the saddlepoint, GH, the curva­
ture is less sharp (smaller F*), the energy from cross­
ing point to minimum is less deep (smaller AV*) 
and the crossing point is higher than at the saddle-
point; all of these effects tend to decrease the tun­
nelling for short crossings. For crossing points 
longer than the saddlepoint, LM, F* is greater and 
A V* is greater than at the saddlepoint; these effects 
tend to give more tunnelling than at the saddle-
point. However, the height of the barrier increases 
as one moves away from the saddlepoint, and this 
effect via Boltzmann's factor tends to counteract 
the more favorable trend in F* and A V*. 

A series of cuts at —45° was made for crossing 
points varying every 0.01 A. from 0.80, 0.80; 0.81, 
0.81 . . . 0.93, 0.93; . . . 1.09, 1.09. For each such 
cut a value of F and A V was found and at each of 
three temperatures, 333, 500 and 10000K., n* and 
a were evaluated for H-H-H and D-D-D. For 
each such cut the Eckart transmission coefficient 
from Table II is interpreted as the value for K(g), 
where q is the crossing point for a —45° motion. 
The plot of K(g) against q is given in Figs. 9, 10, 11 
for H-H-H and D-D-D at each of three tempera­
tures. The form of the classical curve is given by 
the Boltzmann factor for the crossing point, and 
all transmissions are normalized to unity for classi­
cal transmission just at the saddlepoint. The 
area under the classical curve is the denominator 
of eq. 17, and the area under the quantum curves 
is the numerator of eq. 17. Thus the relative 
areas give an estimate of a two-dimensional tun­
nelling correction, T non—sep-

Using Figs. 9-11 we can evaluate tunnelling 
correction factors by the several different methods 
and compare the results in Table III. The ratios 
of quantum to classical areas under the curves in 
Figs. 9-11 are entered as r*av. If we take these to 
be the best estimate of tunnelling, we see that at 
low temperatures a parabolic correction greatly 
overestimates tunnelling, and a one dimensional 
Eckart correction based on the reaction path (AOB, 
in Fig. 1) also greatly overestimates tunnelling. 
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A one dimensional Eckart correction based on the 
normal mode coordinate (EOF in Fig. 1) fairly 
seriously underestimates the tunnelling correction. 
One fortunate simplification emerges; the values 
of K(^) for the most probable crossing point on CD 
in Fig. 1 that give the maximum in Figs. 9-11 are 
in rather good agreement with the tunnelling factor 
based on the averages. (This feature is not un­
common : the average is well approximated by the 
most probable situation.) The carrying out of the 
computations to construct Figs. 9-11 is very tedi­
ous. The constructive simplification discovered 
by this analysis and used to interpret experimental 
data is to replace the averages in (17) by most prob­
able values, to give the practical, working relation 
Rate (non-sep) = i?(eq. 7) r* (2 dim., most prob.) (18) 

Other aspects of Figs. 9-11 are worthy of com­
ment. At 10000K., both classically and in terms 
of quantum mechanics, the systems which react 
were widely distributed in crossing points and the 
classical and quantum distributions differ only 

:C0 0K 

\.m 

Figs. 9-11.—Relative rates of barrier crossing for various 
lines between HG and LM in Fig. 1. Each value of K(q) 
corresponds to the area under a curve such as Figs. 6-8. 
Calculations are made for the H3 reaction and the D» 
reaction. Relative areas under these curves give the values 
of r*sv. in Table I I I . Relative values at the saddlepoint 
give r*r.o. Relative values at the maxirrici give r m.p. 

slightly. At low temperatures the Boltzmann 
factor sharpens the classical distribution of systems 
which react and tunnelling becomes of much greater 

TABLE I I I 

COMPARISON OF TWO-DIMENSIONAL TUNNELLING FACTORS 

WITH VARIOUS ONE-DIMENSIONAL TUNNELLING FACTORS 

Reaction 

H - H - H 

D - D - D 

H - H - H 
D - D - D 

Correc­
tions 

a 
b 

« 
d 

« 
a 

b 

e 

d 

e 

a 

b 

C 

i 

Tunnell 
3330K. 

0 . 8 4 

5.31 
3.85 

16.5 

3.20 
3.13 
2.70 
4 .6 

12.8 

1.82 
1.70 
1.43 
3.60 

ng factors V* 
5000K. 

2.66 
2.54 
2.20 
3.75 
6.4 

1.80 
1.76 
1.70 
1.9 
2.02 

1.48 
1.44 
1.30 
1.97 

- *qu*/*ol* 
10000K. 

1.41 
1.41 
1.38 
1.40 
1.40 

1.19 
1.18 
1.17 
1.18 
1.18 

1.19 
1.20 
1.18 
1.18 

3.16 1.18 
° (r*)av, tunnelling factor averaged over various crossing 

points, two dimensional average, the area under quantum 
curve divided by area under classical curve in Figs. 9, 10,11. 
6 r*m.p., the value of Y*(q) at the most probable crossing 
point, the maximum value of K(g) in Figs. 9, 10, 11. 
cr*r.o., the value of K(g) along the reaction coordinate normal 
mode through the saddlepoint; the value of K(g) at 0.93 in 
Figs. 9, 10, 11; note that AV* in the Eckart relation is 1.3 
kcal., giving a low value of a. d TVp., the value of K(g) 
along the "classical reaction p a t h " extending from reactants 
to complex to products. The value of A V* is the full A F*„ct 
or 7.8 kcal. The Eckart parameter a is thus much larger 
than for (c), although the F", n, v*, or u* are all the same. 
The difference between (c) and (d) is due to the importance 
of "side wall repulsions" to extended normal mode tunnel­
ling. « Bell's parabolic relation, eq. 13. 
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Fig. 12.—Calculated and observed kinetic isotope effect 
for methyl radical reactions with organic compounds. 
(A) Calculated curve assuming no tunnel effect, where the 
kinetic isotope effect arises largely from (JMD/OTH)1'2 and zero 
point energy differences of reactants. (B) Calculated 
curve assuming tunnel effect based on r*m.p. as found from 
treatments similar to but less extensive than Figs. 9-11. 
(C) Calculated curve assuming Eckart potential along 
AOB of Fig. 1 and a given by 2IrI7^aOtAc*. 

relative importance. However, at low tempera­
tures the Boltzmann factor largely wins out over 
the tunnelling phenomenon with respect to locat­
ing the reaction sites. The most probable classical 
crossing point is 0.93-0.93, and at 3330K. the 
most probable quantum reaction trajectory is 
through 0.95-0.95. Even at the lowest tempera­
tures, where the tunnelling factor is almost 6, the 
distribution function for quantum systems which 
cross the symmetric stretch axis is surprisingly 
similar to that for classical systems. The nature 
of the London-Eyring-Sato potential energy sur­
face is such that the reaction process is much more 
nearly along the classical normal mode than one 
would expect, simply from a comparison of the de 
Broglie wave length and the region of separability. 

Methyl Radical-Hydrocarbon Kinetic Isotope 
Effects.—For the family of reactions 

X3C + y-CR 

where x is H or D and y is H or D, a portion of the 
Sato potential energy surface was evaluated. The 
activation energy (corrected for zero point energy) 
was taken to be 13.6 kcal.2 The activated complex 
was assumed to have Ri — R2, and the saddlepoint 
was estimated from Pauling's rule of bond order-
bond distance to be near p = AR = 0.18 A. For 

various values of Sato's parameter k between 0.10 
and 0.20 and for values of p between 0.15 and 0.25, 
a relatively small number of potential energy 
points were evaluated, and the correct saddlepoint 
was quickly found to be given by 

/ W = 0.110; p = 0.22 A. (19) 

A more extensive calculation of the line EOF (Fig. 
1) gives a curve analogous to EOF in Fig. 2 where 
AV* = 3.0 kcal. and F* = 1.04 X 106 dynes/cm. 
A similar calculation through a pair of lines, such as 
LM, parallel to EOF and close to it, established 
the most probable reaction path to be only about 
0.014 A. removed from the normal mode path at 
5000K., the center of the data. The same line 
was used to calculate tunnelling at all tempera­
tures, even though it is realized that this may 
slightly underestimate the tunnelling at low 
temperatures. The data from the literature for 
the reactions13 of methyl radicals with acetone and 
ethane to abstract H or D were reviewed exten­
sively in T-I. The vibration frequencies of the 
activated complex were computed in T-I, and these 
will be used again. Also in T-I we calculated the 
tunnelling correction using an Eckart potential 
along line AOB. 

In Fig. 12 we see the experimental points, the 
curve (A) which includes no tunnelling correction 
(curve A is dominated by the differences of R-H 
and R-D in the reactants, and it is very little af­
fected by any assumptions about the activated 
complex), curve (C) which includes a tunnelling 
correction based on AOB, as if the mass were con­
stant along this line (r*r.P.), and curve (B) which is 
based on eq. 18. The experimental scatter is dis-
couragingly large. However, we feel this analysis 
may indicate the important factors in large tun­
nelling corrections in reactions of the type: heavy 
group-hydrogen-heavy group. The heavy end 
groups constrain the tunnelling motion to be along 
a straight line of —45° slope in Fig. 1. A con­
sideration of tunnelling over all the area GLMH in 
Fig. 1 shows that most of it occurs over a band 
such as ELMF, which is about 0.1 A. wide. Tun­
nelling cannot occur from A to B because of the 
very high barrier opposing a —45° motion between 
these points. Tunnelling cannot occur around the 
curve from A to B because any motion other than 
the —45° line forces the heavy end groups to move, 
and their mass is so great that their tunnelling is 
negligible. By the time the system has moved up 
to where it can get a good tunnelling path near 
EOF, it has almost gone to the top of the barrier 
anyhow. Thus we picture the reaction process as 
activation by collision up to region E or L in Fig. 2, 
and then a quantum mechanical barrier penetra­
tion, reflection or overflight across the area ELMF. 
Curve (B) in Fig. 12 is based on this model, and it 
provides a reasonable representation of the data. 
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Appendix I 
Derivation of Equation 4.—The derivation of eq. 4 follows 

very closely the derivation of eq. 15a of ref. 6, H J R , except 
that it is for an activated complex, for .which one separable 
normal mode is the unstable motion above an inverted para­
bola between limits — h/2 to 5/2. The classical partition 
function for this normal mode is 

S j -
S/2 

S/2 
e~S*q%lkT ^J- e-p2/2m*kT ftp (21) 

where q is the reaction normal mode coordinate, p is the reac­
tion normal mode momentum, / * is the force constant of the 
reaction normal mode and is a negative number and m* is 
the mass associated with the reaction normal mode. De­
fining the first integral in (21) as A and evaluating the second 
integral, we get 

Q* = (l/h) A (2Tm*kT)'/' (22) 

The classical partition function for the entire activated 
complex (regarded as non-linear and with N atoms) is (cf. 
H J R , eq. 3) 

Q0I... = Z J J hs/(2irma kT)lh (23) 
a = 2 

where ma refers to atomic masses. The complete partition 
function in terms of 3 N normal modes (including rotations 
and translations as normal modes) is (cf. HJR, eq. 10) 

32V - 7 

Qci«. = F8ff !(2x*r/fc !) aJlf ' /»| iT/. I J Ur1Q* 
i = 1 

where Q* is given by 22. A comparison of eq. 23 and 24 
shows that the configurational integral is (cf. H J R , eq. 11) 

3ZV - 7 

78ir2M3A I /|'A J J «s-i 

Z = Um«*h (2TTkT)^-V* U*Q* ( 2 4 ) 

where the product of u is raised from SN — 7 to 3 N — 6 by 
multiplying and dividing by u* = hv*/kT = h(f/m*)1/'/ 
2irkT. In a vibrational analysis we again obtain [F,] [G8] — 
3JV - 6 

I J Xi, where Fs and G8 refer to local valence bond Xi, where Fs 
= l 

properties, and Xi = (27IrO2. The product of the last 
two terms in (24) gives considerable cancellation 

u*Q* = f*A/(2*kTy/> (25) 
From (21) we see that A is a function only of/* and T; it is 
not a function of mass. Consequently we again have a 
separation of mass and force-constant variable in analogy to 
(HJR eq. 13a, b). 

VSTT*M>/> 1111A Z\ F, I1A (2rrkT)lh 
/. = (26) 

nw«Vi|G, I1A (ivkT)™-*'* /*'AA 

The first identity in J does not depend on force constants, 
the second does not depend on mass, and therefore both the 
first and second identities depend on neither. Thus the 
first identity depends on the geometry of the activated com­
plex as if it were a normal molecule, and the table of J's in 
H J R is directly applicable to the activated complex struc­
ture. The configurational integral for the activated complex 
is 

Z * 
_ [(2TTkT) 

" L I * I 
3JV-6/2 

F. I1A 

JV n Jc 
/*'A 

(2«kTy/2 
(27) 

or, defining 'Z=*=" as in eq. 5B we have 

Z* = "Z±" J"/* A/(2*kT)>/* 
Replacing Q +/QAXQB in (2) by Z + /ZAXZB we get cancellation 
of A, kT, and h 

R = [Ax] [B] 
" Z * " /*V« 
ZA X ZB 2TTOT*1A 

e-Ea /RT (28) 

But the symbols (f*/m*)'/'/2ll are just the definition of v*, 
the imaginary frequency in the reaction coordinate. Upon 
substitution for v*, we get eq. 4. 

Appendix 2 
Evaluation of Force Constant Determinant of Activated 

Complex from a Potential Energy Surface.—From the 
derivation above, we see that the force constant determinant 
required in eq. 5B can be obtained directly from a potential 
energy surface. For a linear three-atom complex and with a 
Ri-Ri plane such as Fig. 1, the stretching force constants 
about the atom transferred are given directly by various cur­
vatures through the saddlepoint. The coefficient .Fn of eq. 
1 is given by 2A V — FnARi2 for a line through O, parallel to 
the Ri axis, so that AR2 — 0. The coefficient Fn is given by 
2AF = F22Ai^2

2 along a line through O parallel to the Ri 
axis. To obtain Fn, we must find the curvature through 
some line not parallel to R\ or R2; either COD or EOF is very 
convenient for this purpose, although other lines through O 
of slope c may be used. If c = dR2/dRi, the general ex­
pression for changes in potential energy from the saddlepoint 
becomes, along this line 

2 dV = (Fn + C2F2, + 2cFi2)(dRi)2 (29) 

The square of the distance along this line is 

(dyY = (dRi)2 + (dR2)
2 = (1 + c2)(dRi)2 (30) 

The force constant along this line is 

F, = 2 dE/(dy)2 = (Fn + C2F22 + 2cF11)/(I + c2) 

The value of the interaction constant is 

F12 = 
.Fo(I + c2) - Fn - C2F22 

2c 

For the special case that Fu = F22 

_ (1 + c2)(Fc - F11) 
Fli 2c 

(31) 

(32) 

For the special case of (31) that c = — 1, for example, EOF 
in Fig. 1 

F12 = (Fu+ F22)/2 - F_> (33) 

For the special case of (32) that c = — 1 and F11 = F22 

F12 = F11 - F_i (34) 

The force constant determinant in eq. 4 is thus evaluated 

IFi _ J F11 F12 1 ^ - I F 1 2 F 2 2 
FuF22 — F12

2 (35) 

For a saddlepoint with one negative curvature, the expres­
sion FnF 2 2 -F 1 2

2 is negative, and thus its square root ineq. 4 
is imaginary, cancelling the imaginary factor in v*. The 
factor w2 which "diagonalizes" F6 is (1 — Fi2

2ZFnF22), (cf. 
H J R eq. 16). 

The G-determinant can be taken from the geometry of the 
activated complex in the usual way, ref. 7. The secular 
equation [FG — EX] = 0 can be solved for the negative value 
of X*, without necessity of finding the other roots. From 
this value of X*, we find v*, to substitute into eq. 4. The 
other roots of the secular equation give the frequencies re­
quired for eq. 7, if quantum corrections are needed for the 
real vibrations. 

From this analysis we illustrate that in order to calculate 
a rate according to activated complex theory, we do not 
need the entire potential energy surface but only a small 
segment of it near the saddlepoint. If the de Broglie wave 
length is small compared to the region of separability, that is, 
the quadratic region, we use eq. 7 to calculate the rate, and 
all we need is the location of the saddlepoint and its infini­
tesimal curvatures there. For large degrees of tunnelling, 
larger portions of the potential energy surface are needed, as 
discussed in the body of this paper. 


